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Computational and data-handling algorithms are given for a matrix variational method 
designed for a broad class of problems in the quantum theory of electron-atom scatter- 
ing. As implemented, the method is applicable to low energy elastic or inelastic electron 
scattering by a neutral atom of arbitrary shell structure. 

1. INTRODUCTION 

This paper presents previously unpublished details of a general method for 
quantum mechanical computation of the effects of electron scattering by target 
atoms containing more than one electron. The method to be described is applicable 
to low energy scattering by an atom of arbitrary shell structure, where several 
target states may be coupled by inelastic collisions. Several innovations are 
involved in this work, which seeks to extend matrix variational methods that have 
been successful in bound-state problems to the more difficult area of electron 
scattering. 

The method presented here has developed in part from exploratory studies by 
Harris and Michels [l]. Aspects of the formalism and computational algorithms 
have been published separately [2-4]. Since the formalism has evolved in the 
course of implementation, an outline of the most current version will be given here 
in Section 2. 
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A detailed critique of this method, and comparison with other approaches, 
will be published elsewhere [5]. For atoms beyond hydrogen, the most widely 
applicable method for low energy scattering is the close coupling method, recently 
reviewed by several authors [6]. For elastic scattering, physical effects of the 
response of the target atom to the scattered electron have been taken into account 
by the polarized orbitaZ method [7]. Recently, the physical arguments behind the 
polarized orbital method have been put into the context of an ab initio method 
expressed in terms of coupled Green’s functions [8]. In specific applications, the 
present method has been found to be competitive with the best results reported 
for these alternative methods. Implemented as described here, it has the advantage 
of very general applicability with no changes in computer programs. 

The algorithms described here are of two kinds: arithmetic and data handling. 
A full description of the very complex and general procedures involved would be 
impossible without including data handling algorithms. Their planning and 
organization is as important to successful implementation of the method as is the 
analysis of purely arithmetic aspects. 

The main body of this paper, Section 3, gives details of the various algorithms 
that have been implemented in a current computer version of the method. 
References to results obtained in applications to date are given in Section 4, 
together with some comments on limitations of the formalism or of the present 
implementation, 

2. VARIATIONAL METHOD 

Scattering of an electron by an N-electron atom can be described by a stationary 
state Schrodinger wave function constructed in the form 

y = 1 a@,*, + C@&, . (1) 
P CL 

Here 0, is a normalized N-electron target atom wave function for a stationary 
state corresponding to open scattering channelp; lcrz, is the one-electron open-channel 
orbital wave function for channel p, with angular momentum Z, and wave-vector 
of magnitude k, (asymptotic kinetic energy &kD2 in Hartree atomic units); Qp, is 
one of an assumed orthonormal set of N + l-electron Slater determinants. The 
quadratically integrable function 

is the Hilbert space component of Y. The functions #, are not quadratically inte- 
grable. The operator GZ antisymmetrizes O,$, and is assumed here to include the 
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factor (N + l)-1/Z required to give this antisymmetrized function the same relative 
normalization as an N + l-electron Slater determinant. 

The wave function Y can be taken to be an eigenfunction of L2, S2, and of parity. 
The Hilbert space component function Y, can be expanded in antisymmetrized 
LS-eigenfunctions. Since these in turn can be expressed as linear combinations of 
Slater determinants, the expansion indicated in Eq. (1) is completely general. The 
a priori construction of LS-eigenfunctions can be considered as a matter of 
computational convenience. In the first implementation of the present method, 
LS-eigenfunctions have not been constructed explicitly. The method will be 
described here in terms of simple Slater determinants as a basis for the N + l- 
electron Hilbert space. The wave function Y has well defined values of ML , MS , 
and parity, but in general will be a superposition of noninteracting LS-components. 

The Slater determinants CD& are defined in terms of virtual excitations of an 
N-electron reference determinant QO , itself defined as an antisymmetrized product 
of N orthonormal occupied orbital functions & , dj ,... . Virtual excitations are 
defined by replacing some n specified occupied orbitals of GO by n + 1 one-electron 
functions drawn from a set of unoccupied orbitals +a , q$ ,... that are mutually 
orthonormal but orthogonal to the occupied set. The orbitals are quadratically 
integrable functions of space and spin variables. An assumed countable complete 
set of normalizable orbitals { & I$,} generates a uniquely defined basis {CD,} for the 
N + l-electron Hilbert space. A typical Slater determinant CD,, can be denoted by 

where the notation implies that (rja , &, & ,...) replace (& , #j ,...) in reference to 
the determinant CD,, , in the order specified. Appropriate normalization of @, is 
implied. As examples of this notation, 

(4) 

A general computational procedure of successive variational calculations, using 
nested subspaces of the Hilbert space {Q,}, has been discussed in detail elsewhere 
[2, 51. This computational procedure for the scattering problem, used in the present 
work, is equivalent to variational solution of a hierarchy of continuum Bethe- 
Goldstone equations. 

An oscillatory function of nonvanishing asymptotic amplitude cannot be 
represented as a finite superposition of quadratically integrable orbitals. For this 
reason, the part of Y indicated in Eq. (1) that contains the open-channel orbitals $?, 
remains distinct from the Hilbert space component for any calculation using a 
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finite set of orbitals from the countable complete set {&; &}. Each open-channel 
orbital function is of the form 

where the quantum numbers I, ml , m, are determined by the channel index p. The 
radial functionf,(r) satisfies the usual bound-state boundary conditions at Y =: 0 
and is orthogonal (by construction) to all radial functions for normalizable orbitals 
with the same angular and spin quantum numbers. For scattering by a neutral 
atom in a unique, nondegenerate state the asymptotic form off, is 

f,(r) - k;1’2r-1 sin(k,r - &1,5r + 6,). (6) 

This functional form must be suitably modified for scattering by a Coulomb or 
dipole potential. For multichannel scatteringf, can be written in the form 

f, = c Fies, (7) 
i=O.l 

where 

F,, = S, - k;lf2rb1 sin(k,r - &T), 

4, = G - k;1f2r-1 cos(k,r - @gr). (8) 

These functions are constructed to satisfy the same boundary condition at r = 0 
and the same orthogonality conditions as,fp . This ensures that the open-channel 
part of Y, given by the first term in Eq. (l), is orthogonal to the Hilbert space {@,}. 

A target atom wave function 0, can be expressed in the form 

0, = c @,c,p, (9) 

where each @, is a normalized N-electron determinant constructed from the 
orbital functions {#i; $,}. The coefficients c, 9 are obtained as a normalized eigen- 
vector of the N-electron Hamiltonian matrix HO,,, , corresponding to energy 
eigenvalue E, . If E is the total energy of the system, an open-channel k value is 
defined by 

&kD2 = E - E P (10) 

if E - ED is nonnegative. Energies here are in Hartree atomic units. 
In consequence of linearity, Eq. (1) can be expressed in the form 

(11) 
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with 

where the coefficients c,p are the target state eigenvector coefficients of Eq. (9), 
and the coefficients 01~~ , with i = 0, 1, are defined in Eq. (7). The functions @F 
are unnormalized (not quadratically integrable) N + l-electron Slater deter- 
minants 

CO? = CT@,Fi, (13) 

defined in terms of the functions S, , C, of Eqs. (8). 
The coefficients c?, Eq. (1 I), can be obtained separately for each set of indices i, 

p from the matrix equations 

(@,, I H - E I @j, + 1 @“c?) = 0, all CL, j, q. 
Y 

Here His the N + l-electron Hamiltonian operator. These equations follow from 
the variational condition 

aqacF* = 0, all P, 6 P, all oljq , 

where the variational functional is 

z=((ylIH-E/Y). (16) 

When Eqs. (14) are satisfied, the variational functional becomes an explicit 
quadratic function of the coefficients ai9 : 

8 = z z d&39,, (17) 

where, in consequence of Eqs. (14), 

The principal computational effort in the present method is calculation of the 
matrix mp. 

The matrices combined in Eq. (18) are the bound-bound matrix (Hermitian) 

Miv=PulH--EI@J; (19 

the bound-free matrix 

M,,i, = (@, I H - E I @iv); (20) 



234 LYONS et ai. 

and the free-free matrix (non-Hermitian) 

MF = (@, 1 H - E j @,,). 

The matrix elements in Eq. (18) can be written as 

(21) 

(22) 

Then if ?P is an exact solution of the Schrijdinger equation, 

(II-E)Y = 0, 

the coefficients 01 must satisfy the matrix equations 

F mE!Cxja = 0, all i, p. (23) 

For NC open channels, these equations have NC linearly independent solutions. 
Since the asymptotic wave function is specified through Eqs. (7) and (8) entirely 
by the coefficients 01, these coefficients determine physical scattering cross sections. 

It is convenient to use a matrix notation in which channel indices p, q are 
suppressed, but matrices and vectors are segmented according to the indices 
i, j = 0, 1. In this notation the matrix generalization of Eq. (17) is 

= ~O+~mOO~O + mo14 + ~l+hO~O + ml14 
(24) 

and Eqs. (23), for an exact scattering solution, are 

mol = 
( 
moo mol O1o -0 - . 
ml0 I( 1 ml1 011 

(25) 

Here 01 denotes the 2N, x NC rectangular matrix consisting of NC linearly 
independent column vector solutions of Eqs. (25). The symbol (t) denotes an 
Hermitian adjoint, or transpose of a real matrix. 

The reactance matrix K is defined by a matrix solution of Eqs. (25) in the form 

010 = I, 

a1 = K, 
(26) 

where I is the NC x NC unit matrix. An arbitrary solution matrix CL can be reduced 
to this form by multiplying on the right by a;‘, assuming that 01~ is not singular. 
Then in general 

K = a&l. 
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Alternatively, 
-1 K-l = CL& . (27) 

For exact scattering solutions, the reactance matrix is real and symmetric [9]. 
Scattering and transition matrices are defined, respectively, by 

s = (I + iK)(Z - x-1, (28) 

T = -2K(Z - X)-l. (29) 

The partial cross section for scattering from channel p to channel q is, in atomic 
units, 

Q,, = (~k2)l Tm I2 

= (47+,2)1[K(I - X)-l],, 12. 

The free-free matrix of Eq. (21) is not symmetric. The kinetic-energy operator 
in H, when acting on open-channel orbitals with asymptotic form specified by 
Eqs. (S), gives rise to a surface integral such that 

iv;! - My; = g&&& - SJio). 

The same formula holds for rnz. In matrix notation this is 

(31) 

%l - m:, = $I. (32) 

Eq. (25) is a system of 2Nc homogeneous equations for 2Nc unknown coeffi- 
cients, where NC linearly independent solutions are sought. This requires that the 
unsymmetric matrix m have Nc distinct zero eigenvalues. In general this occurs 
only in the limit of an exact solution of the scattering equations. Variational 
methods, based on those originally proposed by Kohn and HulthCn [lo], are used 
to obtain coefficients 01 appropriate to a given matrix mz. Among several alter- 
native methods, model calculations indicate that the OAF (optimized anomaly-free) 
method, to be described here, is generally the most accurate [2]. 

In the OAF method, the 2N,-dimensional linear space of the asymptotic partial 
wave functions is transformed by a unitary matrix 

24 = (a B), (33) 

where 01 and /? are both 2No x NC matrices, each representing NC orthonormal 
column vectors. The transformed matrix m is 

m' = utmu (34) 

(35) 
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The transformation is determined by the condition that m’ should be in upper- 
triangular form, so that 

m’ - jkl+rncd = 0, 10 - (36) 

with all diagonal elements of rnio less in magnitude than those of m;, . Since the 
variational functional is 

8z atmci = mio, (37) 

this minimizes the determinant of 5. 
The variational coefficient matrix [a] is expressed in terms of this preliminary 

transformation by [2] 

(3% 

where 

[K’] = -(m&)-l m& . (39) 

It can be shown that [K’] is stationary with respect to variations about a zero trial 
matrix [2]. The reactance matrix LX~LX;’ is 

K = 6% + /%[K’1>(~0 + Porwl. (40) 

3. COMPUTATIONAL ALGORITHMS 

This section gives details of the algorithms used in each stage of computation. 
A master diagram is shown in Fig. 1. 

The initial stages of an electron-atom scattering calculation make use of 
algorithms and programs described some time ago [l l] that are also used for 
bound-state calculations. A matrix Hartree-Fock calculation is carried out for 
a reference target atom Slater determinant Go , whose occupied orbitals are 
specified in terms of their quantum numbers (n, Z, m, , ml). Radial basis orbitals, 
of the form 

rv-l exp(- [r), (41) 

are specified by a list of exponents 5 for each pair of indices (V I) in a given range. 
Matrix elements appropriate to bound-state calculations are computed by the 
program ONECI [Ill and used for a matrix Hartree-Fock calculation by the 
program SCF [I 11. This calculation defines not only the occupied orbitals & of @, 
but also a complementary set $a of orthonormal orbitals, obtained by diagonalizing 
the matrix of the Hartree-Fock effective Hamiltonian X0 over the full linear space 
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FIG. 1. Map of implementing programs. 

spanned by all basis orbitals. The unoccupied orbitals $a are used in the definition 
of virtual excitations throughout the remaining stages of computation. They will be 
defined here by conventional quantum numbers (n I), but the “principal quantum 
number” IZ is used merely as a counting index for orbitals ordered by increasing 
values of (h I % I &J, and does not have the usual physical connotation. In 
particular the energies (da I Z0 I &) are almost always positive, and the orbitals & 
must be thought of as arbitrarily defined wave packets in the continuum of the 
operator so [l 11. 

The program TRANS [l l] transforms the reduced matrix elements of the 
two-electron Coulomb potential into the representation with orthonormal basis 
(& +a}. The corresponding transformation of one-electron operators (kinetic 
energy and nuclear attraction) is carried out by SCF. 

The transformed matrices, to be used as input data at later stages of the scattering 
calculation, are stored in a general scratch data filing system managed by the 
program CON/360. This program, which is used throughout the current implemen- 
tation of the present method, has been described elsewhere [12]. It serves as a 
monitor and outer loop for all other programs, and also provides various data 
handling services through subroutine calls. CON/360 controls dynamical overlay, 
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SO that program segments (modules) can be loaded, entered, or deleted on request 
from the currently operating program. 

The program CISCAT, indicated in Fig. 1, is the driving program for scattering 
calculations. The specific subprograms that it controls are described in the 
following Sections. 

The initial program ATOMS and several others not indicated in Fig. I, read or 
modify input data to be used by the bound-state programs. 

A. Construction of Target States (SCATA, TARGDET) 

States of the target atom are specified by supplying a list of configurations, 
defined in terms of virtual excitations of the reference configuration. A reference 
channel, for elastic scattering by the target reference state, is defined by specifying 
channel orbital parity and quantum numbers m, , mz . The target reference state 
quantum numbers are those of determinant @,, . A maximum angular quantum 
number 1 is also specified. This information suffices to determine the total 
(N + l-electron) quantum numbers for Y, and to define allowed ranges of the 
(N-electron) quantum numbers for target atom states from the specified configu- 
rations. 

The program SCATA indicated in Fig. 1, provides an outer loop for the 
construction of target atom states. It builds up a list of possible N-electron 
quantum numbers (rr, M, , ML). For each entry in this list, the list of target atom 
configurations is expanded into a list of Slater determinants by program module 
TARGDET, which then calls KDB (described below) to construct the matrix of 
the N-electron Hamiltonian with this determinant list as basis. This matrix is then 
diagonalized by a standard Jacobi program EIGEN and the resulting eigenvalues 
and eigenvectors are added to a stored list for later use. This process is repeated 
until the list (z-, MS , ML) is exhausted. Modules KDB and TARGDET are over- 
layed by EIGEN each time the latter is used. 

For each target atom configuration in the input list, TARGDET constructs 
a list of all Slater determinants with given quantum numbers (7~, MS, ML). While 
construction of LS-eigenfunctions could be done by an orthogonal transformation 
of this linear space, this is not done in the present programs. Nevertheless, because 
of the symmetry of the N-electron Hamiltonian, the eigenvectors eventually 
obtained by EIGEN are necessarily LS-eigenfunctions. Because the target 
configuration-interaction matrices are relatively small, and because this stage of 
computation bears very little weight in a scattering calculation, no significant 
computational advantage would be gained by explicit construction of symmetry- 
adapted target functions prior to the matrix diagonalization. 

An encoded notation has been developed for the description of configurations, 
Slater determinants, and orbital wave functions. This notation makes it possible 
to list, index, or modify these symbolic entities by arithmetic or logical operations. 
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Each orbital function, including spin and angular factors, is specified by four 
indices: Z, n, md , m, . For occupied orbitals of the reference determinant, n has the 
usual meaning of the principal quantum number, but for unoccupied orbitals, n as 
used here is simply a counting index. These four indices define a single integer, 
denoted here by i or a, respectively, for occupied and unoccupied orbitals: 

i or a = 1p3 + n$ + SF + my (42) 

where ~1 is a convenient base integer, and 

1 = 0, l,..., 

n = 1 + 1, I + 2,..., 

s = m, + +, 

m = ml f -iip. 

(43) 

This index integer can be denoted by (In s m). It is uniquely defined if p exceeds 
the maximum range of any of the subindices. 

The notation for Slater determinants, indicated in Eqs. (4), defines an N- 
electron determinant @i”j9::* in terms of 7i virtual excitations a/i of the iv-electron 
determinant QO. This is encoded as a list of 2Zi + 1 integers: 

n, al , h , a2 , z2 ,..., aa, za . (44) 

By convention, a, -C a2 < e-e, and iI < i2 < **a. 
A configuration can be defined as the linear space spanned by all Slater deter- 

minants with common values of the orbital subindices (In). The basis for a 
configuration is the set of Slater determinants with given (In) values, for all 
possible selections of m, and m, . This basis can be further subdivided according 
to values of 

MS= Cm,, ML=Cm,. (45) 

A virtual excitation notation is used for configurations. This is encoded as the list 

where A, < A, < a**, and Z1 < I2 < *es. These integers are defined by 

Z or A = lp3 + np2, (47) 

obtained from (In s m) by setting s = m = 0. If ZJ exceeds 21+ 1, zero cannot 
occur as a specific value of m, defined by Eq. (43). 



240 LYONS et al. 

These notations give concrete form to the operations of program modules 
SCATA and TARGDET, described above. The specific operation of TARGDET 
is to construct a determinant list as a string of the sublists defined by Eq. (44), 
given rr, M, , ML and an input list of configurations. The total quantum numbers 
are specified indirectly in terms of integers (V 0 s n~)~ and (rr 0 s nz), , where 

(7rOsm)== rr$+sp+m. (48) 

Here 7~ is 0 or 1, to indicate orbital parity. The integer (r 0 s m). defines the 
reference channel orbital quantum numbers, and (n 0 s m)p defines possible 
quantum numbers of a set of open-channel orbitals. The criterion used in accepting 
a determinant @, into the target state list for channel set P is 

where 

A(nOMsML) = (77Osm),-(7rOsm),, (49) 

A(rr 0 MS ML) = 2 (ak - i,), 
k=l 

(50) 

with the conventions that in (In s m), for each orbital, n is ignored and the sum 
over 1 is taken modulo 2. The sum in Eq. (50) is easily obtained by scanning the 
integer list used to define @, . 

For an open-shell configuration, the list of Slater determinants for given 
configuration and total quantum numbers contains virtual excitation numbers 

-- 
ii = N, N + I,... . (51) 

Here z can exceed N for the configuration because unoccupied orbitals can replace 
occupied orbitals of the same (In) subshell when the subshell is partially occupied. 
The algorithm for constructing the determinant list makes use of structured lists of 
occupied and unoccupied orbitals, (Z n s m)i and (In s m), , respectively, together 
with pointers to subshells and cross-linkage of each partially occupied subshell. 
The code for each configuration [Eq. (46)] is scanned to construct a list of indices 
LZ~ , d, , giving the number of identical words Z, A, respectively, in the configuration 
code, for each (I n) subshell. By convention the configuration code has all entries Z 
different from all entries A, since an identical replacement (In/l n) would be 
redundant in specifying a configuration. The list {di; d,} defines a skeleton, of order 
fi = Ii7, which is then filled in with (s m) indices to give a list of Slater determinants, 
selected for the given values of (v, MS , ML). When partially occupied subshells 
occur, a sequence of skeletons, of increasing 6, are defined by considering identical 
replacements. Thus d,(ln) and d,(ln) are increased together for each partially 
occupied subshell (Z n), until either di or d, has its maximum value, exhausting the 
available orbital set. All possible combinations of identical replacements for all 
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partially occupied subshells are generated, each defining a skeleton with Ti > w, 
which in turn is used to generate a sublist of Slater determinants with given 
(n, M, , ML). This algorithm produces a complete, ordered list of determinants 
for any given configuration. 

B. ConJgurution-lnteruction Matrix (KDB) 

The program module KDB constructs the configuration-interaction matrix 
(matrix of the N-electron Hamiltonian), given a basis list of Slater determinants. 
Module KDB is used in identical form in bound-state and scattering calculations, 
and has been used for extensive calculations of atomic energy levels and hypertine 
structure [13]. It will be described briefly here because a published description is 
not available elsewhere. 

If the N-electron Hamiltonian is written in the generalized form 

H = 1 K(i) + 1 Q<ii>, (52) 
i ij 

where i = I,..., r and i < j < N, matrix elements of H between a given Slater 
determinant QO and any other determinant @J$::* can be expressed simply in terms 
of operators R and X0 defined by 

(ub 1 R 1 cd) = (ub 
and 

Xo=Kj 

I Q I 4 - Cab I Q I dc) (53) 

The matrix elements c If 

(Qi;;;::: I 

(@Gb 

Pi” 

- i,zc, G I R I 0. 
Hare [14, 151 

H I @,,I = 0, more than 2 substitutions; 

H I %> = WJ I R I 07, 2 substitutions; 

H I %I = (a I % I 9, 1 substitution. 

(54) 

(55) 

Diagonal elements are given by [15] 

(@i”j9:; 1 H j @$;::.) - @, 1 H j @,,) 

= (a I % I 4 + @ I =%I I b) + *a* - (i j So I i) - (j 1 Z. I j) - ... 

+ (ub / R I ub) + *a* + (ij I R I ij) + **a - (ui 1 R I ui) - **.. (56) 

These formulas depend only on the specific indices contained in the substitution 
notation used here. 

For general matrix elements (@, 1 H j @,), with Slater determinants @, and @, 
both defined by virtual excitation (substitution notation) from a reference deter- 
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minant QO, it is necessary to express @@ as a virtual excitation of @, before 
applying Eqs. (55), with Z0 replaced by 

S’?” = X0 + c (a / R j a) - c (i 1 R 1 i). (57) 
a(v) i(v) 

Here a(v) and i(v) are the virtual excitation indices of @, in the notation @,ajq::* . 
These formulas are used explicitly by module KDB to construct the matrix 
fLv - &L . 

The matrix element (QU 1 H 1 di,) is reduced by a simple algorithm that uses the 
substitution notation directly. Given 

@,: m, a,, , 4, ,..., a,, i, ; (58) 

@,: n, a,, , ily ,..., a, , i, , (59) 

this algorithm produces a similar list defining GU as a virtual excitation of @, . 
A phase factor (-1)” is defined by the number of orbital interchanges required to 
match as many as possible occupied orbitals of @, to those of @, . 

The code for 0, is scanned and each element iv is compared with all elements i, 
of the GU code. If a match is found, the element i, is replaced by a, corresponding 
to the matched element iv . If i, differs from all i,, the pair of elements iv , a, are added 
in the stated order to the end of the @, list, and m is increased by one. 

When the @, code is exhausted, the resulting modified @, list is scanned, and 
each element ii, (in the extended list) is compared with every element ab,, . If a 
match is found, element aiu is replaced by a bU , elements in positions ii, and a,, are 
deleted (set to zero), the sign of (-l)p is reversed (p = 0 initially), and m is 
decreased by one. 

It can easily be verified that the final modified Qi, list (ignoring zeroes) is the 
virtual excitation code for @@ relative to @, , that the degree of excitation is given 
by the final value of m, and that the phase factor for matrix elements is the final 
value of (--I)“. 

Matrix elements (ab 1 R I cd) required by KDB are defined by Eq. (53) in terms 
of matrix elements of Q. Angular integration gives the formula [14] 

(ab I Q I cd) = c cA(a; c) cA(d; b)[ac / dblA, 
A 

(60) 

where &(a; c) is a Gaunt coefficient [16, 141 and [ac I &IA is a reduced matrix 
element of the electronic Coulomb potential (generalized Slater parameter) 

[ac j dblA = Iom dr, low dr, (r:+2/r:-1) R,*(rJ R,(r,) Rd(r2) Rb*(r2). (61) 

Tables of these reduced matrix elements are produced by module TRANS in a 
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format, described earlier [ll], that facilitates table look-up. Tables of Gaunt 
coefficients are also produced at an earlier stage of calculation, and used by KDB 
through a simple table look-up algorithm. 

Matrix elements of so are tabulated by program module SCF [l l] in the case of 
a closed-shell reference state. In the more general case, matrix elements of an 
averaged operator 

y%kv = L%ll, W3 

as defined previously [I 1 J, are tabulated by SCF. Matrix elements of X0 required 
by KDB are obtained from these tabulated elements by adding linear combinations 
of matrix elements (ub 1 Q j cd), with coefficients that depend explicitly on ml 
quantum numbers through the Gaunt coefficients of Eq. (60), and also on m, 
quantum numbers. These coefficients, required only for incomplete shells of the 
reference determinant Qp, , are tabulated with input data required by program 
module AMAT, which constructs matrices used by SCF. 

C. Construction of Bound Component (SCATBG, SCATDET) 

The bound or Hilbert space component !PH of the N + l-electron wave function, 
indicated in Eq. (2), is expanded as a linear combination of N + l-electron Slater 
determinants. At a given level of the hierarchy of variational Bethe-Goldstone 
equations used in the present work [2, 51, the basis for u/, is the set of Slater 
determinants obtained by all possible virtual excitations of occupied orbitals (#i} 
forming a specified subset of the occupied orbitals of the reference state. These 
virtual excitations are of the kind indicated in Eqs. (4), with n + 1 unoccupied 
orbitals a, b,... replacing n occupied orbitals $i ,... . These virtual excitations are 
defined in terms of configurations, as in previous bound-state calculations [17], 
so that a given level of the hierarchy of variational calculations is specified by a 
list of occupied subshell quantum numbers (In), with the allowed excitation level 
of each. In analogy to Eqs. (44) and (46) this is encoded as the list 

m, 4 ,I2 ,..., 1% , (63) 

where m < n and Z1 < I, < .... The integers Z are defined as in Eq. (46), each 
denoting an occupied subshell of the reference determinant a,, . This notation 
defines the basis for Y,, as all virtual excitations of the configuration of ds,, indexed 
by any subset of up to m of the subshell indices I1 ,..., I,, which may be repeated 
up to the original occupancy number in @,, . 

The program SCATBG loads KDB and serves as a calling program for 
SCATDET, which reads the Bethe-Goldstone code data of Eq. (63), and then 
constructs the list of N + l-electron Slater determinants defined by this code. The 
code is used to generate the implied sequence of configurations, each of which is 
expanded to a list of determinants using the same algorithm as TARGDET. In the 

581/13/z-6 
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present case, total quantum numbers (n, M, , ML) are those of the full wave 
function Y, so the acceptance criterion replaces Eq. (49) by 

d(7rOM,M,) = (7rOSrn),. (64) 

Since the number of unoccupied orbital indices a exceeds the number of occupied 
indices i, an N + l-electron Slater determinant is encoded as a list of 26 + 1 
integers 

ii, a, , il ,..., aA , - 1, (65) 

where a, < a, < a**, il < iz < a.., and the number of unoccupied orbitals is 
n 3 1. 

When this determinant list is completed, SCATDET is deleted, and program 
module KDB is used to construct the N + l-electron bound-baund matrix H,,” for 
determinants QU , @, in the Hilbert space basis. The algorithm described above for 
KDB works correctly for the modified determinant codes indicated in Eq. (65), 
so KDB is used without modification. It produces the real symmetric bound-bound 
matrix, stored in lower triangular form for subsequent use. This matrix may be 
very large, and must be stored on auxiliary memory devices (disk and tape units 
in the present implementation). 

When the target atom configuration list used by TARGDET contains more 
than the configuration of @,, , combination with an arbitrary additional bound 
orbital implies a set of N + l-electron configurations. This set is always included 
by SCATDET even if not explicitly required by the Bethe-Goldstone code. 

D. Selection of Open Channels (CHANK) 

Program module CHANK is entered from CISCAT with the current reference 
channel k value. This determines total energy 

E = E, -I- +k2, (66) 

where E0 is the lowest target energy eigenvalue obtained for the set of configurations 
containing the reference configuration. CHANK examines all target atom eigen- 
states obtained by SCATA and determines open channels p such that for a target 
energy eigenvalue E, , 

&kD2 = E - E, > 0. (67) 

When this criterion is satisfied, the eigenvector and basis N-electron determinant 
list corresponding to E, are abstracted from master lists stored by SCATA, and 
are placed in open-channel lists in order of decreasing k, . This information 
completely defines the wave functions 0, of Eq. (9). Open-channel orbital quantum 
numbers (In s m), are also abstracted from data stored by SCATA. A condensed 
list of distinct k, values is constructed by CHANK. These parameters define the 
external orbital functions F,, of Eqs. (8). 
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E. Channel Orbital IntegraIs (SCATINT) 

In the present implementation of the variational method, asymptotic oscillatory 
(free) functions are explicitly represented by spherical Bessel functions. Matrix 
elements of the electronic Hamiltonian operator are linear combinations of reduced 
matrix elements of the one-electron kinetic and nuclear potential energy operators, 
and of the two-electron Coulomb potential. Normalizable (bound) basis functions 
are chosen to be of the general form 

t-n-l exp(- lr> Yt,(4 41. (68) 

Reduced matrix elements for bound orbitals only are given by simple recurrence 
formulas, published some time ago [ll]. Reduced matrix elements involving one 
or two free functions are computed by methods given in detail elsewhere [18]. 
These delails will not be repeated here. 

Since very large numbers of many-electron matrix elements are constructed 
from relatively smaller lists of basic integrals (reduced matrix elements), these 
integrals are tabulated when first computed by program module SCATINT, then 
read from the tables as required. The structure of these tables and the table look-up 
algorithms will be described here. These tables are stored by the general scratch 
data storage system used in the present work (CON/360), and then retrieved in 
whole or in part on demand. 

A simplified notation will be used here for functions, operators, and matrix 
elements. Angular integrations reduce either to Kronecker delta symbols or to 
Gaunt coefficients, as indicated in Eq. (60) for two-electron integrals. Tabulated 
reduced matrix elements depend only on the bound and free radial functions, 
which will be denoted here by lower-case indices {a} for bound functions and by 
capital indices {A) for free functions. Specifically, a0 denotes the radial basis 
function, with angular quantum number 1, and normalization constant N, , 

R,‘(r) = N,Pael exp(- lar). 

The free basis functions denoted by Aio are, for i = 0, 1, 

(6% 

(70) 

When divided by k, 1/2 these functions have the asymptotic radial dependence 
required by Eqs. (8). 

Two-electron reduced matrix elements are all of the form defined by Eq. (61). 
One-electron matrix elements are required for the operators, in Hartree units, 

T= -&$ra$+J$$Q, (71) 
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K= T-c, (72) 

where Z is the nuclear charge. The auxiliary radial operator SAu is defined by 
Eqs. (54) and (62) in terms of the shell structure of the reference state. 

Computation, tabulation, and table look-up algorithms for integrals with all 
bound-state basis functions have been described elsewhere [l 11. The new integrals 
required for variational scattering calculations are of the following types: 

Ml1 : (Ai / T - cB / Bjo), 

Ml2 : (a0 1 K - l B 1 B,“), 

Ml3 : (a” I hoI, 

M,, : [a”bo I CioD#, 
(73) 

where Q, is kJ2. These basic integrals are computed directly [18]. 
All of these integrals can be stored and retrieved by making use of segmented 

tables, with simple formulas for the displacement of each integral within its 
segment. The full table is broken into five major segments, corresponding to M,, , 
M,, and Ml3 together, M,, , M,, , and Mz3 . A separate index table contains, in 
order, the five displacement addresses 01~~ ,CQ~ , olzl , az2 , 01~~ and the major segment 
lengths LICX,, , da,, , dol,, , dol,, , dol,, . Units are those of the number represen- 
tation of the integrals, and displacement addresses are relative to the origin of the 
integral table. This information makes it possible to load, edit, or relocate the 
individual major segments. It is followed in the index table by five displacement 
pointers n, 1 , n12 , f121 , n22 , n23 that locate minor segment indices with respect to the 
origin of the index table. 

Each major segment of the integral table is broken into minor segments, each 
consisting of integrals with given orbital angular quantum numbers, Z, or IA for 
bound or free orbitals, respectively. For each minor segment, there is a list of 
four integers in the index table, of the general form 

Y, 4 9 P, 4 (74) 

Here p is the displacement address of the minor segment relative to the origin of 
the relevant major segment, and d/3 is the minor segment length. 

For one-electron integrals y defines a minor segment of the integral table. For 
M i1 , y is the orbital angular quantum number I, = /B of a sublist of free orbitals, 



MATRIX VARIATIONAL METHOD 247 

and d,, = d,., is the number of free basis orbitals with this quantum number. For 
M,, and Ml3 , which are interleaved in the table, y is the quantum number 1, = le 
for a sublist of bound orbitals, and d,, = da is the number of bound basis orbitals 
with this quantum number. 

For two-electron integrals y is an integer constructed from the four l-values that 
define a minor segment of the major segment blocks indicated in Eqs. (73): 

y21 = lop3 -I- IbcL2 + lcp -I- I* ; la a 6 , lc 2 1, 2 

y22 = Lp3 -k Iep2 + icp f IKI ; (44 9 GJ 2 UC , IDI, (75) 
y33 = Lp3 -I- 1bp2 -I- Lp f I* ; 42 2 4 9 

where p is a convenient base integer, as in Eq. (42). The integer d,, = nA is the 
number of allowed values of X in each case. 

This information makes it possible, by first reading the index table, to load and 
relocate the individual minor segments. For one-electron integrals, blocks M,, and 
M12(M13), the integers y occur in counting order, with d,, = 0 for any empty list, 
so the minor segment index list displacement is determined by n,, or n12 and 
quantum number I,, or 1, . For two-electron integrals, n21 , n22 , or n23 are used to 
define the first relative address of index codes to be scanned for the required value 
of the packed index yzl , yz2 , or y23 , respectively. 

Individual integrals within minor segments of the integral table are stored in an 
order that corresponds to a simple table look-up formula. For M,, integrals the 
order can be symbolized by 

(A,O j T - l s 1 Bjo): {ij}; B=O, d/,--l; A=O, L&-l, (76) 

where the notation implies an indexing sequence with each indicated index range 
nested within those written to its right. The symbol {ij} denotes the order 

(AoBo), (AoBd, (A$,)> (A,BJ if A > B, 

(AoBo), (AJo), (AoBd, (A& if A < B. 
(77) 

The displacement address of an M,, integral, relative to the origin of the M,, major 
segment, is 

Pdlrd + 4(Ad, + B) + Z+ J, (78) 
where 

I = i, J=j if A > B, 

I = j, J=i if A < B. 
(7% 

M,, , Ml3 integrals are listed in the order 

(u”IK-~Eg~Bio),(uo~BiO):i=O,l; B=O, d,-1; a=O, d,-1. 
(80) 
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Displacement relative to the M,, major segment origin is 

M,, integrals are listed in the order 

[a”bo ) CioDp]A : (ij}; I&; D = 0, 
dD - 1 

I I c ’ 
c = 0, dc- 1; 

s2 

b = 0, 4-l . 
I I a ’ 

a = 0, d,- 1. 
Sl 

Here (ij} has the same meaning as in Eq. (76), except that number pairs 
[(Zc , C), (Z, , D)] replace (A, B). The symbol (A} denotes the range of A. The other 
symbols in curly brackets are conditional limits. The upper value holds if the sub- 
script condition is false, otherwise the lower value holds. Condition S2 is Zc = IO . 
Condition Sl is 1, = lb . 

The displacement of an M,, integral relative to the Mzl segment origin is 

(83) 

where 
f(h; ij) = 2(x - Amin) + 21-f J, (84) 

with Z and J defined as in Eq. (78), on replacing (A, B) by [(& , C), (Z, , D)]. 
Successive values of A differ by two, so the first term inf(X; ij) is a multiple of four. 

In using Eq. (83), orbital indices for equivalent integrals must be permuted so 
that when Sl is true, a > b, and when S2 is true, C > D. It is assumed here and 
below that orbital indices are permuted so that the angular quantum numbers 
satisfy the ordering conventions indicated in Eqs. (75). 

Mz2 integrals are listed in the order 

[a”Bio 1 c”D# : (0); @Vi D = 0, dD---l . 
I I B , 

S12,a=c 

c = 0, 
da-1 . 

I I a 9 B = 0, dB-- 1; a=O, d,- 
S12 

1. (85) 

Here the condition S12 is (Z, , ZB) = (Zc , ZJ. The symbol {ii} refers to 
[(Zs , B), (ZD , D)]. The displacement of an M,, integral relative to the h4,, segment 
origin is 
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where f(h; ij) is defined with reference to indices [(ls , B), (I0 , D)]. When S12 is 
true, indices must be permuted so that (a, B) > (c, D). 

MZ3 integrals are listed in the order 

[aObO 1 cOD?]h : i = 0, 1; PI; D = 0, do- 1; c = 0, d,-- 1; 

b = 0, 4-l . 
I 1 a ’ 

a = 0, d,- 1. 
Sl 

The displacement of an MZ3 integral relative to the MZ3 major segment origin is 

where 
g(X; i) = (A - Amin) + i. (89) 

When Sl is true, indices must be permuted so that a 3 b. 
These formulas define compact, easily accessed tables that avoid redundancies 

by taking advantage of symmetries inherent in the definitions of the tabulated 
integrals. There are no structural restrictions on the range of angular quantum 
numbers. 

F. Orthogonalization (ORTHSCAT) 

The raw integrals computed by SCATINT are transformed in two ways before 
being used in the construction of many-electron matrix elements. These transfor- 
mations are carried out by program module ORTHSCAT. 

The one-electron operators T and Kin integral blocks M,, and M,, are converted 
to the effective one-electron Hamiltonian X”V of Eq. (62) by combining one- and 
two-electron integrals. 

All integrals involving bound orbitals are transformed to an orthonormal basis 
of radial functions, 

R, = c xabRbo. (90) 
b 

The transformation coefficients &b are computed by module SCF [ll] and stored 
as square matrices. The free orbitals are orthogonalized to the Hilbert space of 
bound orbitals by the transformation 

RiA = RiA - 1 (At 1 a) R, . 
a 

MI, matrix elements are converted to ZAV by the formula [l l] 

(a 1 Y&. - l B 1 B$) = (a” 1 K - EB 1 Bio) + c c pe(cd) A”(cd 1 a&), (92) 
0 (Cd)fi 
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where 

@(cd 1 a&) = C CDA[codo 1 a”Bio]” + 2 C”‘([ x c”ao 1 d”BiO]“’ + [doa 1 c”Bio]“‘). (93) 
A A’ 

The coefficients CJ and C$ , sums of products of Gaunt coefficients, are available 
to ORTHSCAT as a table used in the program module AMAT, which constructs 
@(cd) ab) for the target atom matrix Hartree-Fock calculation. The density 
matrix #(cd) is computed and stored by program module SCF. In Eq. (92), /3 is 
used to index sets of occupied subshells of the target atom reference configuration 
that have the same structure [ll]. The two-electron integrals in Eq. (93) are 
restricted to those for which /, = 1, and I, = Is . The allowed values of h and h’ 
follow from the usual triangle rules for angular momentum quantum numbers. 

Semitransformed M,, and Ml3 matrix elements are computed in the form 

(a 1 Bio) = C x,,(cO j B,O). 
G 

(94) 

These semitransformed matrices are stored for later use in the table format used 
for the raw M,, , Ml3 integrals, indicated in Eq. (80). 

The transformation of M,, integrals is completed by use of Eq. (91) to give 

(a I %4, - EB I &) = (a 1 %v - EB / Bio) - c (a / %& - EB I c>(c 1 &Oh (95) 
e 

Matrix elements (a / XAu / c) are computed and stored by program module SCF. 
The transformed integrals (a j XAu - EB I &) are stored together with (a j Bio) in 
the table format defined by Eq. (80). 

M,, matrix elements are converted to Z& by the formula [l l] 

(A0 I %P, - l B 1 Bjo) = (Ai0 / T - EB 1 B,‘) + c c p”(cd) AB(cd 1 A$,), (96) 
8 (Cd)@ 

where 

Aycd 1 AJ?,) = c CDAICOdO 1 AioBjqA + c C~([COAiO I fi”13,qA + [dOAiO 1 COBjO]“‘). 
A#0 A’ 

(97) 

Notation here conforms to that of Eqs. (92) and (93). It has been shown previously 
that for a neutral target atom omission of the X = 0 direct integrals [cd I AB] in 
Eq. (97) exactly compensates for omission of the Coulomb potential -Z/r from 
the M,, integrals (A I T - E / B) [18]. The omitted integrals would diverge if 
integrated over 0 < r < co. 
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The transformation of MI, integrals is completed by applying Eq. (91) to both 
Aio and Bjo to produce integrals 

= (A: 1 %v - EB j B,o) - c (c 1 -‘h”)(c 1 84~ - EB 1 @) 

- ; (c / %u - GA 1 ‘& j B,o) - ; (CA - EB)(C/ -b?(c 1 B,o) 

+ c c (c 1 -&‘)(c 1 #Av - EB I d)(d I ho)* (98) 
c d 

These integrals are stored in the format defined by Eq. (76). 
Transformation of the two-electron integrals to an orthogonal basis is straight- 

forward, using first Eqs. (90) to refer all integrals to a basis of orthonormal bound 
orbitals, and then Eqs. (91). Semitransformed Mz3 integrals are stored and used in 
the final transformations of M,, and M,, . The two-electron integrals over four 
bound orthonormalized orbitals required for the final transformation are available 
in tables produced by program module TRANS [ll]. Transformed integrals are 
stored in formats indicated by Eqs. (82), (85), and (87). 

As an option, only a subset of the orthonormal radial functions {R,) may be 
used. Then x,~ in Eq. (90) is a rectangular matrix. The transformed integral tables 
produced by ORTHSCAT are accompanied by an index table revised from that 
produced by SCATINT in order to reflect these reductions of dimension and also 
the reordering of table segments necessitated by ORTHSCAT. 

G. Bound-Free and Free-Free Matrices (BFMAT, FFMAT) 

Elements of the bound-free matrix are defined by Eqs. (20) and (12), 

where 

~0:’ = ODoFi9 . (W 

Since the open-channel orbital F,, is orthogonalized to all bound orbitals, the 
matrix elements combined in Eq. (99) follow the rules for matrix elements between 
Slater determinants. Program module BFMAT uses the algorithm described 
above, with reference to module KDB, to construct bound-free matrix elements. 
Several necessary modifications will be described here. 

The coefficients {co} for open channel p and the corresponding iv-electron 
determinant list {QO}, are computed by the target atom programs (SCATA, 
TARGDET, KDB), and stored in tables that are reread by BFMAT. A list of 
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open-channel orbital codes (In s m), , in the format defined by Eq. (42) for bound 
orbitals, is prepared by CHANK for use by BFMAT, together with index pointers 
to the corresponding segments of the coefficient and determinant lists, and a list 
of open-channel k, values. 

Since all of the matrix elements combined in Eq. (99) refer to the same pair of 
open-channel orbitals F,, (i = 0, l), it is convenient to analyze these matrix 
elements in terms of the Slater determinants @), and @, . These are defined in 
substitution notation by integer list codes given by Eq. (65) for @, , an N + l- 
electron determinant, and by Eq. (44) for @,, , an N-electron determinant. The 
antisymmetrized function @? could be encoded by appending (1 PZ s m), , - 1 to the 
code for @, . It can easily be verified that the matrix element algorithm of module 
KDB would give correct formulas for bound-free matrix elements if the 0, code 
were extended in this way. 

The same results are obtained, more simply, by applying the algorithm directly 
to the codes for QU and @, , except that the place of (I n s m), is taken in the 
relative excitation code by “- 1 “. The level of relative excitation dn of @,, with 
respect to @, , in this convention, is always at least one. Because of orbital 
orthogonality it follows, as in Eqs. (55) that the only nonvanishing matrix elements 
are of the form: 

An= 1; i(c, I Xi I FL (101) 

An = 2; i(v, I R I c,F), (102) 

where c, denotes a bound orbital and F denotes Fi, (i = 0, 1). Here the last of 
Eqs. (55) has been used in the equivalent form 

pi” / H / CD()) = (a 1 -y% 1 i) = (a / yi”;,” 1 i), (103) 

where Zia is defined by Eq. (57). 
In BFMAT, the further analysis of matrix elements given by Eqs. (101) and (102) 

follows the pattern of KDB in detail. For An = 2, (clcZ 1 R j c,F) reduces to a sum 
of M,, integrals, multiplied by products of Gaunt coefficients, as indicated by 
Eqs. (53) and (60). For An = 1, 

(cl 1 Zu I F) = (cl / 2'. I F) + c (acl I R I aF) - & &I I R I 8. (104) 
a(u) 

The R-integrals reduce as in the case An = 2. Matrix elements (cr I ZAV 1 F) are 
tabulated as M,, integrals. Matrix elements of Y& - XAV are two-electron integrals 
arising from interactions with the open shells of the reference target configuration. 
They reduce to MZ3 integrals with coefficients that depend on m, and m, quantum 
numbers, obtained as in KDB. 
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The rectangular matrix MU,,, is constructed by rows: given CL, all values of 
open-channel indices p are considered in order, with elements i = 0, 1 computed 
and stored successively for each p. Each row in turn is output to auxiliary storage 
by CON/360. Since index p has the dimension of the N + l-electron Hilbert space, 
M rr,iP will in general be too large for storage in available main memory of a 
computer. 

The MS3 integral blocks (minor segments of the transformed integral table 
produced by ORTHSCAT) are treated as pages in a demand paging algorithm. 
Any block, once read into main memory, is kept until no space remains. Then the 
paging system is reset, and built up again as blocks are required. Individual 
integrals are located within the blocks by Eq. (87). 

Elements of the free-free matrix are computed by program module FFMAT. 
The matrix elements, defined by Eqs. (21) and (12) are 

Mz = (Oi, / H - E 1 Ojg) (105) 

= c c c,“(@id” 1 H - E j @F) c,“. 006) 
0 7 

FFMAT follows procedures very similar to those of BFMAT, both modelled on 
KDB. Because the free-free matrix is a square matrix of linear dimension only twice 
the number of open channels, it is stored in main memory. Coefficients {c,,“} and 
the corresponding list of N-electron determinants {QO}, are available as data stored 
by the target atom programs. 

Because open-channel orbitals Fig are not quadratically integrable, matrix 
elements My are not defined unless 

$kg2 = E - E, = E 9, (107) 

where k, is the parameter used to define the asymptotic behavior of Fj, , and Ep is 
an eigenvalue of the target configuration atom interaction matrix, 

From Eqs. (9), (12), and (13), the antisymmetrized N + l-electron functions Oj, 
can be written in the form 

If this is substituted into Eq. (105), making use of Eq. (107), Mz can be written in 
the form 

MC* = (0, I H - Eq I @,)(Fi, I Fj& + [Oi, I H - eq I @,,I. (110) 
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Here the square-bracket notation is used to denote a matrix element evaluated as if 
(Fi, 1 Fj,) were zero for all values of the indices ip, jq. Terms in (Fi, j FjQ) are 
explicitly collected together in the first term of Eq. (llO), which vanishes in 
consequence of Eq. (108), regardless of the definition of (Fi, 1 Fje). A more precise 
argument can be based on truncating all integrals at some large value of the radial 
variable r, then passing to the limit r -+ co. The result is 

Matrix elements [@F / H - cq j @p] are obtained in FFMAT by applying the 
KDB algorithm to the determinant codes for @, and @, , then appending (I II s m), , 
(I 12 s m), to the relative excitation code of @, with respect to @, . If this relative 
excitation index is denoted by dn, the only nonvanishing matrix elements are of 
the form: 

An = 0; f(Fiz, I -% - cz I Fd, (113) 

An= 1; f Wi, I R I @A (114) 

where c, denotes a bound orbital. 
The further analysis of these matrix elements by FFMAT follows the pattern of 

KDB and BFMAT. For An = 1, (cF 1 R j cF) reduces to a sum of M,, and M,, 
integrals multiplied by products of Gaunt coefficients. For An = 0, matrix 
elements (F I #AV - E / F) are tabulated as Ml, integrals, and matrix elements 
(F I Z0 - ZAz) / F) are sums of M,, and M,, integrals. 

The matrix MF is separated into four blocks M&f, MD4 01 3 Mft, and Mff , since 
these blocks are manipulated separately in several variants of the multichannel 
variational method. These matrices are constructed and stored in main memory. 

The Ml1 , Kl , and M,, integral blocks required by FFMAT are treated as 
pages in a demand paging algorithm, as in BFMAT. Individual integrals are 
located within the blocks by the formulas of Eqs. (76) (82), and (85). 

The four integrals indexed by (ij), with other indices equal, are stored together 
in the integral blocks M,, , M,, , and M,, with the ordering convention denoted by 
{ij} in Eqs. (76), (82), and (85). This ordering convention, which is the natural 
counting order of indices for M,, , is imposed on M,, and Mz2 in order to 
standardize the table look-up logic of FFMAT, which combines integrals from 
these three different blocks. The ordering {ij} ensures that indexing (i,j) depends 
only on information supplied by the free orbital codes (/ IZ s m), , (In s m), 
regardless of permutations of indices carried out by table look-up algorithms for 
the various integrals. 



(ll8) 

where MU,i, is the bound-free matrix. Because T is triangular, B can be con- 
structed by sequential processing of both TUa and M,,i, . In general, both of these 
matrices can be too large for storage in main computer memory. When M,,,, can 
be contained in main memory, it is replaced element by element by Ba,, . Other- 
wise, main memory is used as a buffer area and B,,i, is built up in sequential 
segments [ 191. 
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In terms of the auxiliary matrix B, Eq. (18) reduces to 

This sum is evaluated by program module MMAT in a single sequential scan of 
matrix B,,i, . The relatively small free-free matrix Mg is stored in main memory 
and converted in place to rn:!. 

The free-orbital normalization indicated by Eqs. (70) is maintained until the 
completion of MMAT. Then factors (k&,&1/z are introduced by the subsequent 
program RMAT in order to convert my to the normalization specified by Eqs.(8). 

I. Computation of the Reactance Matrix (RMAT) 

Program module RMAT uses the optimized anomaly:free (OAF) variational 
method to compute the reactance matrix K,, or R, . This method, which is 
described in detail elsewhere [2], is the most satisfactory of a number of alternative 
methods based on the multichannel Kohn variational principle [lo]. 

The transformation of my to upper triangular form, indicated in Eqs. (35) and 
(36), is carried out by the double QR algorithm [20]. This algorithm is modified so 
that complex eigenvalues lead to real but irreducible 2 x 2 blocks along the 
diagonal of the transformed matrix m’. With this provision, all numbers are real, 
and the transformation u is an orthogonal matrix. The triangularization algorithm 
originally published [2], an extension of the Jacobi method, was found not always 
to converge in cases of closely spaced eigenvalues, whereas the convergence of the 
QR algorithm is assured [20]. 

The QR algorithm does not guarantee that diagonal elements of the transformed 
matrix (eigenvalues if no complex roots occur) are ordered by magnitude. An 
additional series of 2 x 2 rotations of adjacent rows and columns are carried out 
by RMAT to convert to m’ to a canonical form. If there are no complex eigenvalue 
pairs, this form is such that rnio = 0; m& is nonsingular with its largest elements 
arranged along the leading diagonal; and for each such element, the corresponding 
diagonal element of m&, is less in magnitude than the corresponding diagonal 
element of miz. In the case of complex eigenvalues, nonzero elements are 
necessarily left in mio. In this case, Eq. (39) is replaced by [2] 

[r] = -(mi, - m$-lrn&. (120) 

The Kmatrix is computed from Eq. (40). This computed matrix is not in general 
symmetric. The degree of asymmetry serves as a criterion for convergence of the 
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overall calculation. The symmetric part of K is diagonalized to produce eigenphases 
and eigenchannel vectors. This information is recombined to give physical inelastic 
and elastic cross sections, using Eq. (30). 

J. Resonance Search (SCATRES) 

A multichannel resonance search procedure, which has been fully described 
elsewhere [2], is included as an optional modification of the outer loop module 
CISCAT. 

4. APPLICATIONS AND DISCUSSION 

The method described here has been applied to a series of electron-atom 
scattering calculations of increasing complexity. These calculations have served to 
establish the validity and limitations of the method and of the system of computer 
programs that embody the algorithms described here. 

Calculations have been reported on e--H resonances in the elastic region [21], 
of e--He elastic scattering, including the isolated resonance near 19.3 eV [22], of 
e--Li, Na, K elastic scattering and resonances [23], and of e--He inelastic scattering, 
in the energy region of excitation of 12 = 2 states [24]. Calculations of electron 
scattering by C, N, and 0 atoms are currently in progress. 

Results obtained are in substantial agreement with the best previous theoretical 
calculations and with available experimental data in all these applications. In 
calculations of e--He inelastic scattering, the 23S excitation cross section has been 
obtained in qualitative agreement with experimental data for the first time. The 
most elaborate previous calculations had to be modified by an ad hoc adjustment 
of the 2% excitation cross section in order to be compared with experiment [25]. 

The most severe limitations of the present method arise from the particular 
choice of functional forms made in the implementation described here. The choice 
of spherical Bessel functions as free basis orbitals limits applications to scattering 
by neutral atoms, since Coulomb wave functions are needed to describe 
electron-ion scattering. By itself, this limitation could be removed by developing 
efficient quadrature techniques for integrals representing the generalization to 
Coulomb wave functions of those indicated in Eqs. (73). Analytic methods for 
these integrals have been proposed [26], but a comparative study of efficiency is 
not yet available. 

A more fundamental limitation is due to the fact that the effective potentials in 
electron-atom scattering, arising from static multipole moments or from multipole 
polarization of the target atom, can be of very long range. Wave functions are 
modified from their far asymptotic forms by terms of the form of oscillatory 
functions divided by powers of r [27]. Such functions, when included in the basis 
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set of normalizable orbitals, have been found to be essential to rapid convergence 
of the orbital expansion in variational calculations [28]. Since such damped 
oscillatory functions are necessarily energy-dependent, their inclusion would 
require reconstruction of the bound-bound matrix at each reference channel 
k-value. It would also increase the number of independent basis functions required 
in a multichannel problem. However, without such functions, convergence of the 
orbital expansion is slow and irregular. 

Inclusion of asymptotic functions determined by numerical integration would be 
desirable, but requires either a basic reformulation of the method [5,29] or the 
development of new, highly efficient methods for numerical evaluation of matrix 
elements involving oscillatory functions. 

Eigenfunctions of L2 and S2 are not constructed explicitly in the method described 
here. This causes matrices occurring in applications to be unnecessarily large, with 
redundant elements. This obvious inefficiency has been accepted only as a tempo- 
rary expedient, in order to arrive more quickly at a working program capable of 
testing the general method. Several procedures are available for utilizing LS- 
eigenfunctions throughout the calculations, but considerable problems of program 
organization are encountered in implementing any such procedure without 
imposing limitations on target atom shell structure or on the allowed range of 
angular quantum numbers and virtual excitations. 

A computer program constructed according to the algorithms described here has 
been used for the various applications mentioned above. Some idea of the 
computational requirements of this method can be obtained from the time and 
space parameters of typical production runs for e-He inelastic scattering, on an 
IBM 360/195 system, using 3330 disk units. For S-states, with 12 open channels 
and 5 distinct k-values, a run at one total energy with 8 s-orbitals and 6p-orbitals 
in the normalizable basis required 256K bytes of main memory and ran in 
110 seconds CPU time. Disk space of 100 cylinders was allocated but only used 
in part. For D-states, with 16 open channels and 5 distinct k-values, a run at one 
energy with 8 basis s-orbitals, 6 p-orbitals, 6 d-orbitals, and 5 f-orbitals required 
384K bytes of main memory and 22 minutes CPU time. Disk space of 100 cylinders 
was allocated. 
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